GREEN WLAN:
On-Demand WLAN Infrastructures
Wireless Local Area Networks:

- essential tool for a flexible service;
- centralized management;
- basic coverage → dense WLANs with redundant layers;

Objective: to meet user demand during peak time.
Fact: peak times rarely occur.
⇒ APs remain idle ⇒ energy waste.
Solution: adoption of highly efficient resource management strategies that depend on user demand.
In practice: SEAR.

François Santy
Green WLANs
Wireless Local Area Networks:
 • essential tool for a flexible service;
Wireless Local Area Networks:
- essential tool for a flexible service;
- centralized management;
Wireless Local Area Networks:

- essential tool for a flexible service;
- centralized management;

⇒ basic coverage → dense WLANs with redundant layers

Objective: to meet user demand during peak time.
Fact: peak times rarely occur.
⇒ APs remain idle ⇒ energy waste.
Solution: adoption of highly efficient resource management strategies that depend on user demand.
In practice: SEAR.

François Santy
Green WLANs
Wireless Local Area Networks:

- essential tool for a flexible service;
- centralized management;

⇒ basic coverage → dense WLANs with redundant layers

Objective: to meet user demand during peak time.

Fact: peak times rarely occur.

⇒ APs remain idle ⇒ energy waste.

Solution: adoption of highly efficient resource management strategies that depend on user demand.

In practice: SEAR.
Wireless Local Area Networks:

• essential tool for a flexible service;
• centralized management;

⇒ basic coverage → dense WLANs with redundant layers

Objective: to meet user demand during peak time.
Fact: peak times rarely occur.

Solution: adoption of highly efficient resource management strategies that depend on user demand.

In practice: SEAR.
Wireless Local Area Networks:
 • essential tool for a flexible service;
 • centralized management;
⇒ basic coverage → dense WLANs with redundant layers
Objective: to meet user demand during peak time.
Fact: peak times rarely occur.
⇒ APs remain idle ⇒ energy waste.
Wireless Local Area Networks:

- essential tool for a flexible service;
- centralized management;

⇒ basic coverage → dense WLANs with redundant layers

Objective: to meet user demand during peak time.
Fact: peak times rarely occur.
⇒ APs remain idle ⇒ energy waste.
Solution: adoption of highly efficient resource management strategies that depend on user demand.
Wireless Local Area Networks:

- essential tool for a flexible service;
- centralized management;

⇒ basic coverage → dense WLANs with redundant layers

Objective: to meet user demand during peak time.
Fact: peak times rarely occur.
⇒ APs remain idle ⇒ energy waste.

Solution: adoption of highly efficient resource management strategies that depend on user demand.
In practice: SEAR.
Resource on-demand strategy: efficiently manage WLANs resources, provide a high quality service.
Resource on-demand strategy: efficiently manage WLANs resources, provide a high quality service. Demand-driven ⇔ schedule-driven.
Resource on-demand strategy: efficiently manage WLANs resources, provide a high quality service. Demand-driven ⇔ schedule-driven. RoD strategies must fulfill three requirements:
Resource on-demand strategy: efficiently manage WLANs resources, provide a high quality service. Demand-driven ⇔ schedule-driven. RoD strategies must fulfill three requirements:

- ensure coverage;
Resource on-demand strategy: efficiently manage WLANs resources, provide a high quality service.
Demand-driven ⇔ schedule-driven.
RoD strategies must fulfill three requirements:

- ensure coverage;
- maintain client performance;
Resource on-demand strategy: efficiently manage WLANs resources, provide a high quality service. Demand-driven ⇔ schedule-driven. RoD strategies must fulfill three requirements:

- ensure coverage;
- maintain client performance;
- avoid frequent client re-associations.
Sear resides on the central controller of a centralized WLAN.
Sear resides on the central controller of a centralized WLAN. ⇒ it has a complete knowledge of the physical position and state of APs.
Sear resides on the central controller of a centralized WLAN. ⇒ it has a complete knowledge of the physical position and state of APs. ⇒ it controls efficiently all APs.
Sear resides on the central controller of a centralized WLAN.⇒ it has a complete knowledge of the physical position and state of APs.⇒ it controls efficiently all APs.

Four steps:
Sear resides on the central controller of a centralized WLAN.
⇒ it has a complete knowledge of the physical position and state of APs.
⇒ it controls efficiently all APs.
Four steps:
1. green clustering;
Sear resides on the central controller of a centralized WLAN.
⇒ it has a complete knowledge of the physical position and state of APs.
⇒ it controls efficiently all APs.
Four steps:

1. green clustering;
2. user demand estimation;
Sear resides on the central controller of a centralized WLAN.
⇒ it has a complete knowledge of the physical position and state of APs.
⇒ it controls efficiently all APs.

Four steps:

1. green clustering;
2. user demand estimation;
3. topology management;
Sear resides on the central controller of a centralized WLAN. ⇒ it has a complete knowledge of the physical position and state of APs. ⇒ it controls efficiently all APs.

Four steps:

1. green clustering;
2. user demand estimation;
3. topology management;
4. user management.
Green clustering

Objective: form clusters of APs.

Idea: only one AP within each cluster can ensure basic coverage.

Two steps:

1. Neighborhood discovery
2. Cluster formation

One AP within each cluster is named as the cluster's head.
Green clustering
Objective: form clusters of APs.
Green clustering
Objective: form clusters of APs.
Idea: only one AP within each cluster can ensure basic coverage.
Green clustering
Objective: form clusters of APs.
Idea: only one AP within each cluster can ensure basic coverage.
Two steps:
Green clustering
Objective: form clusters of APs.
Idea: only one AP within each cluster can ensure basic coverage.
Two steps:
Green clustering
Objective: form clusters of APs.
Idea: only one AP within each cluster can ensure basic coverage.
Two steps:

1. Neighborhood discovery
Green clustering
Objective: form clusters of APs.
Idea: only one AP within each cluster can ensure basic coverage.
Two steps:

1. Neighborhood discovery
2. Cluster formation
Green clustering
Objective: form clusters of APs.
Idea: only one AP within each cluster can ensure basic coverage.
Two steps:
1. Neighborhood discovery
2. Cluster formation

One AP within each cluster is named as the *cluster’s head*.
demand estimation
demand estimation
Objective: estimate user demand within each cluster.
demand estimation
Objective: estimate user demand within each cluster.
Idea: helps SEAR making strategic decisions.
demand estimation
Objective: estimate user demand within each cluster.
Idea: helps SEAR making strategic decisions.
In practice: channel utilization.
Topology management
Topology management
Objective: reconfigure the network by powering on or off APs.
Topology management
Objective: reconfigure the network by powering on or off APs.
In practice: done at regular time intervals.
User management
User management
Objective: reduce excessive roaming between APs.
User management
Objective: reduce excessive roaming between APs.
re-associations ↗⇒ performances ↘

User management
Objective: reduce excessive roaming between APs.
re-associations $\uparrow \Rightarrow$ performances \downarrow
\Rightarrow determines the quality of service.
Does SEAR satisfies each requirements?
Does SEAR satisfies each requirements?
⇒ evaluate
Does SEAR satisfy each requirement?

⇒ evaluate

Two WLANs infrastructures:
Does SEAR satisfies each requirements?
⇒ evaluate
Two WLANs infrastructures:

1. 15 APs and 9 clients, two adjacent floors;
Does SEAR satisfies each requirements?
⇒ evaluate
Two WLANs infrastructures:

1 15 APs and 9 clients, two adjacent floors;
⇒ evaluate green clustering on coverage, throughput
Does SEAR satisfies each requirements?
⇒ evaluate
Two WLANs infrastructures:

1. 15 APs and 9 clients, two adjacent floors;
 ⇒ evaluate green clustering on coverage, throughput
 ⇒ determine energy savings.
Does SEAR satisfies each requirements?
⇒ evaluate
Two WLANs infrastructures:

1. 15 APs and 9 clients, two adjacent floors;
 ⇒ evaluate green clustering on coverage, throughput
 ⇒ determine energy savings.

2. 3 APs and 9 clients, same room;
Does SEAR satisfies each requirements?
⇒ evaluate
Two WLANs infrastructures:

1. 15 APs and 9 clients, two adjacent floors;
 ⇒ evaluate green clustering on coverage, throughput
 ⇒ determine energy savings.

2. 3 APs and 9 clients, same room;
 ⇒ evaluate user association management;
Does SEAR satisfy each requirement?
⇒ evaluate

Two WLAN infrastructures:

1. 15 APs and 9 clients, two adjacent floors;
 ⇒ evaluate green clustering on coverage, throughput
 ⇒ determine energy savings.

2. 3 APs and 9 clients, same room;
 ⇒ evaluate user association management;

What are the results?
Client connectivity:
Client connectivity:
⇒ each client receives connectivity from at least one AP.
Client connectivity:
⇒ each client receives connectivity from at least one AP.
⇒ each client receives the same throughput whatever AP is powered on.
Client connectivity:
⇒ each client receives connectivity from at least one AP.
⇒ each client receives the same throughput whatever AP is powered on.
⇒ one AP per cluster is sufficient to provide basic coverage.
Throughput:
Throughput:
⇒ small decrease in the average throughput.
Throughput:
⇒ small decrease in the average throughput.
⇒ still, not significant.
Power savings:

- Depends on a few parameters (especially a channel utilization threshold).
 - Threshold = 60%
 - Cut in energy consumption of 46%.
Power savings:
Depends on a few parameters (especially a channel utilization threshold).
Power savings:
Depends on a few parameters (especially a channel utilization treshold).
⇒ $\text{treshold} = 60\% \Rightarrow \text{cut in energy consumption of 46\%}$.
What are the conclusions?

1. powering off APs has minimal impact on client performances;
2. extra APs are only necessary during peak times;
⇒ Resource on-demand strategies lead to energy savings.

Still, better performances could be achieved.
What are the conclusions?

1. powering off APs has minimal impact on client performances;
What are the conclusions?

1. powering off APs has minimal impact on client performances;
2. extra APs are only necessary during peak times;
What are the conclusions?

1. powering off APs has minimal impact on client performances;
2. extra APs are only necessary during peak times;
⇒ Resource on-demand strategies lead to energy savings.
What are the conclusions?

1. powering off APs has minimal impact on client performances;
2. extra APs are only necessary during peak times;

⇒ Resource on-demand strategies lead to energy savings. Still, better performances could be achieved.